首页> 外文OA文献 >Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae.
【2h】

Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae.

机译:酿酒酵母脂质颗粒和内质网中磷脂酸的生物合成。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lipid particles of the yeast Saccharomyces cerevisiae harbor two enzymes that stepwise acylate glycerol-3-phosphate to phosphatidic acid, a key intermediate in lipid biosynthesis. In lipid particles of the s1c1 disruptant YMN5 (M. M. Nagiec et al., J. Biol. Chem. 268:22156-22163, 1993) acylation stops after the first step, resulting in the accumulation of lysophosphatidic acid. Two-dimensional gel electrophoresis confirmed that S1c1p is a component of lipid particles. Lipid particles of a second mutant strain, TTA1 (T. S. Tillman and R. M. Bell, J. Biol. Chem. 261:9144-9149, 1986), which harbors a point mutation in the GAT gene, are essentially devoid of glycerol-3-phosphate acyltransferase activity in vitro. Synthesis of phosphatidic acid is reconstituted by combining lipid particles from YMN5 and TTA1. These results indicate that two distinct enzymes are necessary for phosphatidic acid synthesis in lipid particles: the first step, acylation of glycerol-3-phosphate, is catalyzed by a putative Gat1p; the second step, acylation of lysophosphatidic acid, requires S1c1p. Surprisingly, YMN5 and TTA1 mutants grow like the corresponding wild types because the endoplasmic reticulum of both mutants has the capacity to form a reduced but significant amount of phosphatidic acid. As a consequence, an s1c1 gat1 double mutant is also viable. Lipid particles from this double mutant fail completely to acylate glycerol-3-phosphate, whereas endoplasmic reticulum membranes harbor residual enzyme activities to synthesize phosphatidic acid. Thus, yeast contains at least two independent systems of phosphatidic acid biosynthesis.
机译:酵母酿酒酵母的脂质颗粒带有两种酶,可将3-磷酸甘油逐步酰化为磷脂酸,这是脂质生物合成的关键中间体。在s1c1破坏剂YMN5的脂质颗粒中(M.M.Nagiec等人,J.Biol.Chem.268:22156-22163,1993),在第一步之后酰化停止,导致溶血磷脂酸的积累。二维凝胶电泳证实S1c1p是脂质颗粒的组成部分。第二个突变菌株TTA1(TS Tillman and RM Bell,J. Biol。Chem。261:9144-9149,1986)的脂质颗粒基本上不含GAT基因的点突变,而甘油3-磷酸酰基转移酶的体外活性。磷脂酸的合成是通过结合YMN5和TTA1的脂质颗粒而重建的。这些结果表明两种不同的酶对于脂质颗粒中磷脂酸的合成是必需的:第一步,由公认的Gat1p催化3-磷酸甘油的酰化;第二步,溶血磷脂酸的酰化需要S1c1p。出人意料的是,YMN5和TTA1突变体像相应的野生型一样生长,因为两个突变体的内质网都具有形成减少但大量的磷脂酸的能力。结果,一个s1c1 gat1双突变体也是可行的。来自该双突变体的脂质颗粒不能完全酰化3-磷酸甘油,而内质网膜具有残留的酶活性来合成磷脂酸。因此,酵母包含至少两个独立的磷脂酸生物合成系统。

著录项

  • 作者

    Athenstaedt, K; Daum, G;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号